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Abstract:  

The propagation of dust acoustic (DA) solitary waves in  

two-dimension dusty plasma containing adiabatic electrons 

and ions and negatively charged dust fluid has been 

investigated by considering a new expression for the 

polarization force effect. The Kadomstev–Petviashvili (KP) 

equation is derived by using reductive perturbation technique. 

The stability analysis is discussed for the existence of DA 

solitary waves. The expression for the energy of DA solitary 

waves has been derived as well. The effects of the adiabaticity 

of electrons-ions, ion temperature, electrons-to-ions density 

ratio and polarization force on the basic properties of the DA 

solitary waves have been investigated. It is shown that the 

effects of adiabaticity, ion temperature and polarization force 

significantly modify the basic properties (amplitude, width and 

speed) of the DA solitary waves. It is also shown that the 

soliton energy  is increased with the increase of adiabatic 

index but decreased with the increase of polarization force. 

Keywords: Adiabatic dusty plasma; Kadomtsev–Petviashvili 

equation; polarization force; Solitary wave solution. 
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1. Introduction  

The study of nonlinear phenomena in the field of dusty plasmas 

have become one of the most important topic in plasma physics. A 

dusty plasma comprise charged heavy dust particles, electrons and 

ions. Such plasmas can be found nearly everywhere in space, such 

as in comet tails and planetary rings, interstellar clouds, 

magnetospheres, as well as in many industrial and laboratory 

plasmas [1-7]. Due to the electrons typically have a larger thermal 

speed than the ions, dust grains embedded in a plasma  are often  

negatively charged. As a consequence of the presence of charged 

dust grains in a plasma, different types of collective processes exist 

and very rich wave modes can be excited. One of these modes is 

the low-frequency dust acoustic (DA) wave, which arises due to the 

restoring force, that comes from the thermal pressures of both the 

electrons and ions, while the inertia is due to the dust mass. 

Theoretically, DA wave was first reported by Rao et al.[8] in an 

unmagnetized dusty plasmas, which consisting of inertial charged 

dust fluid, Boltzmann distributed electrons and ions. Experimentally, 

a number of  authors have established the existence of DA waves in 

dusty laboratory plasmas [9-12].  

In addition to DA waves, there has been significant progress in 

the study of the associated nonlinear structures such as DA solitary 

waves or solitons, which arise due to a balance between nonlinear 

effects and dispersion. Solitons are a particular type of solitary wave 

which maintain their shape and speed after interactions and have 

been extensively studied in mathematics and physics due to their 
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stable structure and also because they arise as solutions to various 

exactly solvable models including the Korteweg-de Vries (KdV), 

Kadomstev–Petviashvili (KP) equation and the nonlinear 

Schrödinger (NLS) equation. Earlier, a number of theoretical 

investigations have been carried out in this direction [13-16]. 

Another interesting feature of dusty plasma physics is that the 

embedded charged dust particles in a dusty plasma may experience 

several forces that play an important role in the dynamics of these 

particles and thus modifying the properties of the DA waves. Two of 

these effective forces are the electric and the polarization forces. In 

fact, the polarization force arises due to any kind of deformation of 

the Debye sheath around the particulates in the background of non-

uniform plasmas and it is always in the direction of decreasing 

Debye length 𝜆𝐷 [17, 18]. The effect of polarization force on the 

propagation characteristic of DA wave was first applied by Khrapak 

et al.[19]. They showed that the phase velocity of DA waves 

decreases with the increase of the strength of polarization force. 

 Recently, a number of researchers have studied the 

characteristics of linear and nonlinear DA wave structures in the 

presence of polarization force effect in homogeneous and non-

homogeneous plasma. For example,  Bandyopadhyay et al. [20] 

studied the propagation of DA solitary waves in a dusty plasma 

containing Maxwellian electrons and ions, and negatively charged 

dust grains, including  polarization force effect. They derived the 

KdV type equation by using reductive perturbation method. They 

found that, with an increase of the polarization force, the amplitude 

(width) of a solitary wave  increases (decreases). Mamun et al.[21] 

considered Maxwellian electrons and ions as well as strongly 
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coupled negatively charged dust in presence of the effect of 

polarization force, which arises due to the polarization of electrons 

around the positively charged dust grain. Asaduzzaman and Mamun 

[22] studied the effects of modified polarization force on the linear 

DA waves in a nonuniform dusty plasma containing adiabatic 

electrons and ions and negatively charged dust grains. They found 

that the phase velocity of the DA waves increases with the increase 

of the adiabaticity of both electrons and ions, but it decreases with 

the increase of the polarization force. El-Labany et al. [23] illustrated 

that the nonlinearity coefficient in the nonlinear DA wave 

propagation increases by increasing the polarization force. Mayout 

et. al. [24] studied the effect of the polarization force on the DA 

soliton energy and fund that, the soliton energy decreases with an 

increase in the effects of plasma-dust particles polarization 

interaction. Recently, El-Labany et. al. [25] have investigated  the 

nonlinear characteristics of DA solitary waves through KdV–Burgers 

equation in a polytropic complex plasma containing adiabatic 

electrons and ions and negatively charged dust grains including the 

effects of modified polarization force. They shown that an increase 

in the value of the modified polarization parameter leads to a fast 

decay and diminishes the oscillation amplitude of the DA damped 

cnoidal wave. In the most of the above investigations, KdV equation 

or its variants for one-dimensional study, has been derived by using 

reductive perturbation method [26]. 

 Although the nonlinear characteristics of DA solitary waves in a 

dusty plasma were studied  by means of the KP equation, yet the 

effect of polarization force (which can lead to any significant 

changes in the nonlinear characteristics of DA solitary waves) on 
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two dimensional DA solitary waves through of the KP equation in 

dusty plasma has not received the attention of researchers. 

Moreover, all of the above theoretical investigations are valid only 

under the condition 𝑇𝑒 ≫ 𝑇𝑖, in which the polarization force arises 

mainly due to the polarization of plasma ions around the dust grain 

(which is not congruous in general) where 𝑇𝑒 and 𝑇𝑖 are the electron 

and ion temperatures respectively. Therefore, in the present 

investigation, we intend to study the dynamics of DA solitary waves 

in two-dimensions in a dusty plasma containing adiabatic electrons-

ions, and negatively charged dust grains in the presence of 

generalized polarization force effect. We introduce a generalized 

expression for the influence of the polarization force, which is a 

more generalized in realistic situation (space and laboratory 

environment). We have set up and solved the KP equation for DA 

solitary waves and explored the combined effects of different 

plasma parameters (viz., generalized polarization force and the 

adiabatic parameter.) on the characteristics and energy of DA 

solitary wave.  

This paper is organized as follows: the theoretical model and a 

set of normalized basic equations describing the system are given in 

Sec.2. Sec.3, deals with the derivation of the KP equation. In Sec. 4 

the stationary solution of KP equation and stability analysis are 

given.  The expression for energy of solitary waves is derived in 

Sec.5. The results and discussion are presented in Sec. 6. Finally, 

conclusions are given in Sec.7. 
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2. Theoretical model  

Let us consider a three-component unmagnetized two-

dimensional dusty plasma system consisting of adiabatic electrons 

and ions, and negatively charged dust fluid in the presence of 

generalized polarization force. In low frequency phenomena in the 

regime where dust dynamics is important, the inertia of the electrons 

and ions can be neglected, and the dynamics of adiabatic electrons 

and ions are considered. Thus, the densities of adiabatic electrons 

and ions can be written as, 

𝑛𝑒 = 𝑛𝑒0 (1 +
𝛾 − 1

𝛾
𝜎𝜃𝑖𝜙)

1 𝛾−1⁄

, (1) 

𝑛𝑖 = 𝑛𝑖0 (1 −
𝛾 − 1

𝛾
𝜎𝜙)

1 𝛾−1⁄

, (2) 

 

where 𝑛𝑒0(𝑛𝑖0) is the equilibrium density of electrons (ions), 𝑇𝑒0(𝑇𝑖0) 

is the equilibrium temperature of electrons (ions) and 𝛾 is the 

adiabatic index of electrons-ions. In an isothermal process one has 

𝛾 = 1, in an adiabatic process without heat transfer we have 𝛾 =

(2 + 𝑁) 𝑁⁄ , with  𝑁 begin degree of freedom (i.e., 𝛾 = 3 for one-

dimensional adiabatic flow,  𝛾 = 2  for two-dimensional adiabatic 

flow and 𝛾 = 5 3⁄  for three-dimensional adiabatic flow). We define 

𝜃𝑖 = 𝑇𝑖0 𝑇𝑒0⁄  is the ion-to-electron temperature ratio and 𝜙 =

𝑒𝜑 𝑘𝐵𝑇0⁄  is the normalized electrostatic potential, in which 𝜑 is 

electrostatic potential and 𝑇0 = 𝜎𝑇𝑖0 is the effective temperature with 

𝜎 = (1 − 𝜌) (1 + 𝜌𝜃𝑖)⁄ . The equilibrium densities of electrons (𝑛𝑒0) 

and ions (𝑛𝑖0) are related to the equilibrium dust density (𝑛𝑑0) and 

the dust charge number (𝑍𝑑) by the charge neutrality condition as, 

𝑛𝑖0 = 𝑛𝑒0 + 𝑍𝑑𝑛𝑑0. 
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The fluid equations including the polarization force term in the 

dust momentum equation that governing the dust component in our 

system are described by the continuity, the momentum and the 

Poisson equation which can be written as, respectively, 

𝜕𝑛𝑑

𝜕𝑡
+ ∇ ∙ (𝑛𝑑𝑼𝑑) = 0, (3) 

(
𝜕

𝜕𝑡
+ 𝑼𝑑 ∙ ∇) 𝑼𝑑 =

𝑍𝑑𝑒

𝑚𝑑
∇𝜑 −

𝑄𝑑
2

8𝜋𝜖0𝑚𝑑

∇𝜆𝐷

𝜆𝐷
2 −

𝜇𝑑𝑘𝐵𝑇𝑑

𝑚𝑑

∇𝑛𝑑

𝑛𝑑
, (4) 

∇2𝜑 =
𝑒

𝜖0

(𝑛𝑒 + 𝑍𝑑𝑛𝑑 − 𝑛𝑖). (5) 

 

In the above equations, 𝑛𝑑 is the dust number density, 𝑼𝑑 represent 

the velocity vector of the dust fluid, 𝑇𝑑 is the dust temperature,𝑚𝑑 is 

the dust grain mass and 𝜇𝑑 = (1 𝑘𝐵𝑇𝑑⁄ )(𝜕𝑃𝑑 𝜕𝑛𝑑⁄ ) is the 

compressibility coefficient which is related to the coupling parameter 

[27].     

For notational clarity, we normalize the dynamic variables 

appearing in the Eqs. (3)-(5). The dust density, dust velocity, and 

electrostatic potential are then normalized as 𝑛 = 𝑛𝑑 𝑛𝑑0⁄ , 𝑼 =

𝑼𝑑 𝐶𝑑⁄  and 𝜙 = 𝜑 𝜑0⁄ respectively, where 𝐶𝑑 = (𝑍𝑑𝑘𝐵𝑇0 𝑚𝑑⁄ )1 2⁄  and 

𝜑0 = 𝑘𝐵𝑇0 𝑒⁄ . The linearized Debye length 𝜆𝐷 is normalized as Λ𝐷 =

𝜆𝐷 𝜆𝐷0⁄  where 𝜆𝐷0 = (𝜖0𝑘𝐵𝑇0 𝑛𝑑0𝑍𝑑𝑒2⁄ )1 2⁄  is the Debye length. The 

time and space variables are normalized by the plasma period 

𝜔𝑝𝑑
−1 = (𝜖0𝑚𝑑 𝑛𝑑0𝑍𝑑

2𝑒2⁄ )
1 2⁄

and Debye length 𝜆𝐷0 respectively. Thus, 

we can rewrite the basic equations [i.e., Eqs. (3)-(5)] in the following 

normalized forms:  

𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝑛𝑼) = 0, (6) 



   Yemen Uni . J. N. (5) September 2020                                                              ( 5مجلة جامعة اليمن العدد )0202 سبتمبر          

                                                                               

ISSN: 2710-3390 

22 

 

(
𝜕

𝜕𝑡
+ 𝑼 ∙ ∇) 𝑼 = ∇𝜙 − 2𝑅

∇Λ𝐷

Λ𝐷
2 − 𝜇𝑑𝜎𝑑

1

𝑛
∇𝑛 (7) 

∇2𝜙 =
𝜌

1 − 𝜌
(1 +

𝛾 − 1

𝛾
𝜎𝜃𝑖𝜙)

1
𝛾−1

−
1

1 − 𝜌
(1 −

𝛾 − 1

𝛾
𝜎𝜙)

1
𝛾−1

+ 𝑛, 

(8) 

where 𝜎𝑑 = 𝑇𝑑 𝑍𝑑𝑇0⁄ , 𝑅 = 𝑍𝑑𝑒2 16𝜋𝜖0𝑘𝐵𝑇0𝜆𝐷0⁄  is the polarization 

parameter, which determining the effect of the polarization force and 

𝜌 = 𝑛𝑒0 𝑛𝑖0⁄  is the electron-to-ion number density ratio at 

equilibrium. Here, ∇= (𝜕 𝜕𝑥⁄  , 𝜕 𝜕𝑦⁄ ) and 𝑼 = (𝑢, v) where 𝑢 and v 

are the velocity components of the dust grains in 𝑥-and 𝑦-directions, 

respectively.  

Furthermore, we assume that the normalized potential is small, 

such that 𝜙 ≪ 1. As a consequence of this, we may expand the 

functions appearing in the Eqs. (1) and (2) such that 

𝑛𝑒 = 𝑛𝑒0 (1 +
𝜎𝜃𝑖

𝛾
𝜙 +

2 − 𝛾

2𝛾2
𝜎2𝜃𝑖

2𝜙2 + ⋯ ), (9) 

𝑛𝑖 = 𝑛𝑖0 (1 −
𝜎

𝛾
𝜙 +

2 − 𝛾

2𝛾2
𝜎2𝜙2 + ⋯ ). (10) 

For the purpose of deriving the KP equation for this system, we only 

require up to the 𝜙2 term. 

 Now, To derive the generalized expression for polarization 

force, looking at the normalized Debye length Λ𝐷, which appear in 

Eq. (7),  we see that  

Λ𝐷 = 𝜆𝐷 𝜆𝐷0⁄ = (
𝑛𝑖0𝑇𝑒0 + 𝑛𝑒0𝑇𝑖0

𝑛𝑖𝑇𝑒0 + 𝑛𝑒𝑇𝑖0
)

1 2⁄

. (11) 
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Substituting Eqs. (9) and (10)  into Eq. (11), we can see that, the 

normalized Debye length, Λ𝐷 simplifies to 

 

Λ𝐷 = (1 + 𝛼1𝜙 + 𝛼2𝜙2 + ⋯ )−1 2⁄ , 
(12

) 

where the coefficients 𝛼1 and 𝛼2 (which are related to the plasma 

parameters 𝜌, 𝜃𝑖 and 𝛾) are respectively given by  

𝛼1 =
𝜎(1 − 𝜌𝜃𝑖

2)

𝛾(1 + 𝜌𝜃𝑖)
,    𝛼2 =

𝜎2(2 − 𝛾)(1 + 𝜌𝜃𝑖
3)

2𝛾2(1 + 𝜌𝜃𝑖)
. 

Substituting Eq. (12) into Eq. (7), the normalized momentum 

equation [i.e, Eq.(7)] can be simplified to  

(
𝜕

𝜕𝑡
+ 𝑼 ∙ ∇) 𝑼 = (1 − P1 − P2𝜙)∇𝜙 − 𝜇𝑑𝜎𝑑

∇𝑛

𝑛
, (13) 

where P1 = 𝑅𝛼1 and P2 = 𝑅 (𝛼1
2 − 4𝛼2) 2⁄ . 

It is clear that, the polarization force in our model is a function of 

adiabatic index (𝛾), the ratio of electron background density to ion 

background density (𝜌) and the ratio of electron temperature to ion 

temperature 𝜃𝑖. This feature adds a new physics to the whole 

system. It is clear that when 𝑇𝑒0 ≫ 𝑇𝑖0, the parameters 𝑃1 and 𝑃2 in 

Eq. (13), which are related to the polarization force, respectively 

reduce to the same parameters Γ1 and Γ2 which derived by El-

Labany et al. [25] 
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3. Derivation of  KP equation  

In order to derive the KP equation, we employ the well-known 

standard reductive perturbation method [26]. According to this 

method, we choose the independent variables as 

𝜉 = 𝜖(𝑥 − 𝜆𝑡),  𝜏 = 𝜖3𝑡,    𝜂 = 𝜖2𝑦, (14) 

where 𝜖 is a small (0 < 𝜖 ≤ 1) dimensionless expansion parameter 

which characterizes the strength of nonlinearity in the system and 𝜆 

is the phase velocity of the DA solitary waves along the 𝑥-direction. 

The physical dependent quantities are expanded about their 

equilibrium values in power series of 𝜖 as  

𝐹 = 𝐹0 + 𝜖2𝐹1 + 𝜖4𝐹2 + ⋯, (15) 

with  𝐹 = (𝑛, 𝑢, 𝜙), and  𝐹0 = (1, 0,0),   

whereas 

v = 𝜖3v1 + 𝜖5v2 + ⋯. (16) 

 Substituting Eqs. (14)-(16) into Eqs. (6), (8), and (13), and then 

equating the coefficients of different powers of 𝜖, from the lowest 

order terms of the continuity, and the momentum equations, we get 

𝑛1 =
(1 − 𝑃1)

𝜇𝑑𝜎𝑑 − 𝜆2
𝜙1, (17) 

𝑢1 =
𝜆(1 − 𝑃1)

𝜇𝑑𝜎𝑑 − 𝜆2
𝜙1. (18) 
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The lowest order term of y-component of momentum equation is        

𝜆
𝜕v1

𝜕𝜉
= 𝜇𝑑𝜎𝑑

𝜕𝑛1

𝜕𝜂
− (1 − 𝑃1)

𝜕𝜙1

𝜕𝜂
, (19) 

and the lowest order term of Poisson's equation yield 

𝑛1 + 𝛿1𝜙1 = 0. (20) 

The phase velocity of DA solitary waves is obtained from the 

lowest order Poisson’s equation (20) together with Eq.(17), which is 

given by 

𝜆 = √
(1 − P1)

𝛿1
+ 𝜇𝑑𝜎𝑑 . (21) 

         It can be noted from equation (21) that the phase velocity is 

modified due to inertialess adiabatic electron-ion and polarization 

force.  

       To the next higher terms (~𝜖4) of the continuity, and the 

momentum equations, we have 

𝜕𝑛1

𝜕𝜏
− 𝜆

𝜕𝑛2

𝜕𝜉
+

𝜕𝑢2

𝜕𝜉
+

𝜕

𝜕𝜉
(𝑛1𝑢1) +

𝜕v1

𝜕𝜂
= 0, (22) 

𝜕𝑢1

𝜕𝜏
− 𝜆

𝜕𝑢2

𝜕𝜉
+ 𝜇𝑑𝜎𝑑

𝜕𝑛2

𝜕𝜉
− (1 − P1)

𝜕𝜙2

𝜕𝜉
+ 𝑢1

𝜕𝑢1

𝜕𝜉

− 𝜆𝑛1

𝜕𝑢1

𝜕𝜉
− P2𝜙1

𝜕𝜙1

𝜕𝜉
− (1 − P1)𝑛1

𝜕𝜙1

𝜕𝜉
= 0, 

(23) 

and the next higher order of Poisson's equation is 

𝑛2 = −𝛿1𝜙2 − 𝛿2𝜙1
2 +

∂2𝜙1

∂𝜉2
, (24) 

where the coefficients 𝛿1 and 𝛿2 are given by 

𝛿1 =
1

𝛾
,      𝛿2 =

𝜎2(2 − 𝛾)(𝜌𝜃𝑖
2 − 1)

2𝛾2(1 − 𝜌)
. 
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Eliminating the second-order perturbed quantities that appeared 

in Eqs. (22)-(24) with the help of equations Eqs. (17)-(20), we obtain 

the KP equation as  

𝜕

𝜕𝜉
(

𝜕𝜙1

𝜕𝜏
+ 𝐴𝜙1

𝜕𝜙1

𝜕𝜉
+ 𝐵

𝜕3𝜙1

𝜕𝜉3
) + 𝐶

𝜕2𝜙1

𝜕𝜂2
= 0, (25) 

where the nonlinear, dispersive, and diffractive coefficients 𝐴, 𝐵, and 

𝐶 are respectively given by  

𝐴 = −
1

2𝜆𝛿1

[2𝜆2(𝛿1
2 + 𝛿2) + 𝛿1(1 − 𝑃1) + P2 − 2𝜇𝑑𝜎𝑑𝛿2], 

𝐵 =
𝜆2 − 𝜇𝑑𝜎𝑑

2𝜆𝛿1
, 

and 

𝐶 =
𝜆

2
. 

 

4. Solution  of KP equation and stability analysis  

In order to find the solitary wave solution of KP equation (25), 

we have define the transformed coordinate 𝜒 = 𝜉 + 𝜂 − 𝑉0𝜏 of the 

co-moving frame where 𝑉0 represents the velocity of the co-moving 

frame with solitary wave. Using single variable transformation, KP 

Eq. (25) is converted into an ordinary differential equation and 

integrating with used the boundary conditions ( 𝑑𝑚𝜙1 𝑑𝜒𝑚⁄ → 0 as 

𝜒 → ∞, 𝑚 = 0, 1, 2),  we get  

𝐵
𝑑2𝜙1

𝑑𝜒2
+

𝐴

2
𝜙1

2 − (𝑉0 − 𝐶)𝜙1 = 0. (26) 

Multiplying both sides of Eq.(26) by 𝑑𝜙1 𝑑𝜒⁄  , and then 

integrating once with taking into account the above boundary 

conditions, we can get the  energy conservation equation as 
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1

2
(

𝑑𝜙1

𝑑𝜒
)

2

+ 𝑉(𝜙1) = 0, (27) 

 

 

where  

𝑉(𝜙1) =
𝐴

6𝐵
𝜙1

3 −
(𝑉0 − 𝐶)

2𝐵
𝜙1

2, (28) 

refers to the classical pseudo-potential. Thus, the solitary wave 

solution of the KP equation (25) is 

𝜙1 = 𝜙𝑚sech2 (
𝜒

𝐿
). (29) 

It is quite evident from above solitary wave solution that the 

peak amplitude of the solitary wave i.e., 𝜙𝑚 = 3(𝑉0 − 𝐶) 𝐴⁄   is 

dependent on the nonlinearity coefficient while the solitary wave 

width 𝐿 = √4𝐵 (𝑉0 − 𝐶)⁄  depends on the dispersive coefficient. If we 

consider the propagation of DA solitary wave in the two-dimensional 

KP equation, the solution may become unstable. It is, therefore, 

obligatory to address the stability of the KP equation.  Note that the 

necessary condition for a stable solitary wave solution (29) is 

[
𝑑2𝑉(𝜙1)

𝑑𝜙1
2 ]

𝜙1=0

< 0.  

 According to this condition, we obtain  

[
𝑑2𝑉(𝜙1)

𝑑𝜙1
2 ]

𝜙1=0

= −
(𝑉0 − 𝐶)

𝐵
. (30) 

From Eq. (30) it is found that (𝑉0 − 𝐶) 𝐵⁄  should be positive for the 

existence of solitary wave solution (29). This condition is always 

possible only if 𝐵 > 0 and (𝑉0 − 𝐶) > 0 or 𝐵 < 0 and (𝑉0 − 𝐶) < 0. 

Now from the expression of dispersive coefficient 𝐵, we have 𝐵 is 
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always positive. This means that (𝑉0 − 𝐶) > 0 and 𝑉0 > 𝐶 must be 

satisfied. Thus, for a stable solitary wave solution, the condition 𝑉0 >

𝜆 2⁄  must always possible. This then has to be taken into account 

when choosing the value of 𝑉0 in the present study. 

 

 

 

5. Energy of solitary wave  

The study of the amplitude and width of solitary waves is a 

common way to further recognize the waves in plasmas, so it is of 

great importance to see the variation of solitary wave energy with 

various plasma parameters. The solitary wave energy 𝐸𝑆 can be 

obtained by using the following integral [28, 29] 

𝐸𝑆 = ∫ 𝑈1
2

∞

−∞

𝑑𝜒, (31) 

where 𝑈1 (= √𝑢1
2 + v1

2)  is the resultant velocity of the dust fluid with 

𝑢1 and  v1 are the first order perturbed velocities of the dust fluid in 

the 𝑥 and 𝑦-directions, respectively. From Eqs. (18), (19) and (29), it 

is convenient to determine the first order perturbed velocities of the 

dust fluid in the x- and y-directions, respectively 

𝑢1 = −
𝜆(1 − 𝑃1)

𝜆2 − 𝜇𝑑𝜎𝑑
𝜙𝑚sech2 (

𝜒

𝐿
), (32) 

v1 = −
𝜆(1 − 𝑃1)

𝜆2 − 𝜇𝑑𝜎𝑑
𝜙𝑚sech2 (

𝜒

𝐿
). (33) 

By substituting Eqs. (32) and (33) into Eq. (31) and after integration, 

we obtain 

𝐸𝑆 = 24𝛿1 (
𝑉0 − 𝐶

𝐴
)

2

𝐿(1 − P1 + 𝜇𝑑𝜎𝑑𝛿1). (34) 
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6. Results and discussion  

We numerically investigate the characteristic properties of the 

dust acoustic solitary waves in typical dusty plasmas. the typical 

numerical values of the physical parameters are selected based on 

actual experimental data [30, 31]. 𝑛𝑒0 = 5 × 1013 𝑚−3; 𝑛𝑖0 = 1 ×

1014 𝑚−3 ; 𝑇𝑖0 = 600𝐾; 𝑇𝑒0 = (1 − 1.16) × 104𝐾; and 𝑍𝑑 = (1 − 2) ×

104. Figure 1 shows the dependence of phase velocity 𝜆 of solitary 

wave on the both of adiabaticity of electrons-ions 𝛾 and the 

polarization force (thorough the parameter 𝑅). Note that, there is 

large phase velocity is obtained with  adiabatic case ( 𝛾 = 2), while 

for isothermale case ( 𝛾 = 1), the phase velocity 𝜆 becomes smaller. 

We can also see that the phase velocity 𝜆 decreases with 

polarization parameter 𝑅 for two cases.  

 

 

Figure 1: Variation of phase velocity 𝜆 against polyrization parametr 

𝑅 for adiabatic case (𝛾 = 2) and isothermal case (𝛾 = 1), with 𝜎𝑑 =

0.001, 𝜃𝑖 = 0.06, 𝜌 = 0.5, and 𝜇𝑑 = 1. 
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Figure 2: Variation of phase velocity 𝜆 against polyrization parametr 

𝑅 for different values of 𝜌 with 𝛾 = 2, 𝜎𝑑 = 0.001, 𝜃𝑖 = 0.06 , and 

𝜇𝑑 = 1. 

 

 

 

 

Figure 2 represents the variations of 𝜆 with respect to 

polyrization force parameter 𝑅 for different values of 𝜌. It seems that 

the phase velocity 𝜆 decreases with the increase of polarization 

force (𝑅). For a finite value of 𝑅 the phase velocity increases with 

the increase of 𝜌. Furthermore, it is obvious from figure 2 that for 

𝑅 = 0 (i.e., in the absence of polarization effect ), the the phase 

velocity is fixed for a variation in density ratio 𝜌. This means that the 

phase velocity independent on 𝜌 in the absence of polarization 

effect.  
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Figure 3: The electrostatic potential profiles 𝜙1 against 𝜒 for 

different values of polyrization parametr 𝑅 with 𝛾 = 2, 𝜎𝑑 = 0.001, 

𝜃𝑖 = 0.06 , 𝜌 = 0.5,  𝜇𝑑 = 1, and 𝑉0 = 1. 

 

 

Figure 4: The electrostatic potential profiles 𝜙1 against 𝜒 for two 

different values of  𝛾  with 𝜎𝑑 = 0.001, 𝜃𝑖 = 0.06 , 𝜌 = 0.5, 𝜇𝑑 = 1, 

and 𝑉0 = 1. 

 

Figure 3 depicts the electrostatic potential profile of DA solitary 

waves 𝜙1 against 𝜒 for different values of polarization parameter 𝑅. 

It can be seen that the solitary structure enlarges as 𝑅 increases. In 



   Yemen Uni . J. N. (5) September 2020                                                              ( 5مجلة جامعة اليمن العدد )0202 سبتمبر          

                                                                               

ISSN: 2710-3390 

32 

 

the other words, the amplitude of the solitary wave profile increases, 

whereas the width decreases slightly. Physically, this is because the 

polarization force causes a modification of the restoring force and 

thus the solitary wave profile. Figure 4 depicts the effects of 

adiabaticity of electrons–ions 𝛾 on the electrostatic potential of DA 

solitary waves in the presence of polarization force. It is observed 

that, in the isothermal case (i.e., 𝛾 = 1), the pulse profile of DA 

solitary waves becomes taller and narrower, while due to 

adiabaticity of electrons-ions (i.e., 𝛾 = 2), the pulse profile becomes 

shorter and wider. In the other words, for adiabatic case, the 

amplitude of DA solitary waves decreases, but the width decreases.  

 

Figure 5: The electrostatic potential profiles 𝜙1 against 𝜒 for 

different values of ion tempreture reaue 𝜃𝑖 with 𝑇𝑒 = 11600𝐾, 𝑇𝑖 =

𝜃𝑖𝑇𝑒, 𝜎𝑑 = 0.001, 𝛾 = 2 , 𝜌 = 0.5, 𝑍𝑑 = 2 × 104, 𝜇𝑑 = 1,  and  𝑉0 = 1. 

    

The effect of ion temperature (through ion temperature ratio 𝜃𝑖 

where electron temperature is kept fixed) on the pulse profile of DA 

solitary waves in the presence of polarization force is shown in Fig. 

5. It is seen that increasing the ion temperature leads to a decrease 

in the amplitude and width of DA solitary waves. This means that 

when ion temperature is high, the polarization force will be smaller. 
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It is concluded that the properties of the DA solitary waves are 

modified significantly in the presence of polarization force. 

The influences of the polarization force as well as other plasma 

parameters (i.e., 𝛾, 𝜃𝑖 ) on the energy of solitary waves (solitons) are 

also investigated. The results are shown graphically in the figures 6 

and 7. Figure 6 shows the dependence of solitary wave energy 𝐸𝑠 

on the adiabatic index  𝛾, and  the polarization force (vai 𝑅). It is 

observed that the soliton energy increases as 𝑅 increases for all 

values of 𝛾 (i.e., for both adiabatic and isothermal cases). We can 

also see that in the isothermal case ( 𝛾 = 1), large maximum solitary 

wave energy is obtained, but in the adiabatic electrons-ions case ( 

𝛾 = 2), minimum solitary wave energy is obtained. In the figure 7 the 

solitary wave energy 𝐸𝑠 have been plotted against 𝜃𝑖 (where 

electron temperature is kept fixed) for different values of 𝜌 in the 

presence of polarization force. This figure shows that the solitary 

wave energy  decreases with  𝜃𝑖, and increases with 𝜌. 

 

Figure 6: Variation of solitary wave energy 𝐸𝑠 against polarization 

parameter 𝑅 for two different values of 𝛾 with 𝜃𝑖 = 0.06 , 𝜌 = 0.5 , 

𝜎𝑑 = 0.001,  𝜇𝑑 = 1, and 𝑉0 = 1. 
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Figure 7: Variation of solitary wave energy 𝐸𝑠 against 𝜃𝑖 for different 

values of polyrization parametr 𝑅 with 𝜎𝑑 = 0.001, 𝛾 = 2, 𝑍𝑑 = 2 ×

104, 𝑇𝑒0 = 1.16 × 104𝐾, 𝜇𝑑 = 1, and and 𝑉0 = 1. 

7. Conclusion  

In this paper, the modifications arising in the nonlinear 

propagation of two dimensional DA solitary waves due to the 

presence of polarization force acting on the dust grains are 

theoretically investigated in a dusty plasma medium containing 

adiabatic electrons and ions, and negatively charged dust fluid. We 

have carry out a reductive perturbation technique to obtain the KP 

equation which governs the behavior of the two-dimensional small 

amplitude DA solitary waves. It is observed that, only negative 

potential solitary waves can exist in our medium. The stability 

analysis is also discussed with respect to the sufficient condition for 

soliton stability. The effects of polarization force 𝑅, ion temperature 

𝜃𝑖, density ratio 𝜌 and adiabaticity of electrons–ions 𝛾 on DA solitary 

waves have been studied . We find that, the phase velocity of DA 

solitary waves  is decreased by the effects of polarization force, but 
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is increased by the effect of adiabaticity of electrons and ions. Due 

to polarization force effect, the density ratio leads to increases in the 

phase velocity. The solitary wave potential is significantly modified 

by polarization force the adiabaticity of electrons and ions, the ion 

temperature  and the ratio of electron density to ion density. It is 

found that with an increase of the polarization force, the solitary 

wave amplitude increases, whereas the width decreases. Moreover, 

the variation of energy 𝐸𝑠 of solitary wave (or soliton) with physical 

parameters is also observed. In the isothermal case, the soliton 

energy 𝐸𝑠 is comparatively larger than that of adiabatic case. Finally, 

the present results should elucidate the excitation of the nonlinear 

DA solitary waves in different space and laboratory dusty plasmas. 
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